Uncategorized

Generate Faster PCB Assembly Turnarounds

For a small PCB prototyping business intent on serving some of the best-known and most respected tech brands on the planet, quick turnaround is more than a marketing gimmick – it’s a promise. PCB prototype assembly is by no means a simple activity, and small, time-consuming hang-ups can turn into lost orders and angry customers in an industry where 48-hour turnarounds are the norm.

In order to be able to reliably produce results on such short time frames, PCB assembly plants need to optimize nearly every aspect of their workflow for speed and consistency. At the heart of this need is an inherent conflict between maximizing the assets and resources you already own or adding additional assets and resources to your environment.

Essentially, what fast-turnaround PCB assemblers want to know is whether they should hire additional help and make more use of their machines, or buy newer, better machines that may let them make the most of their current staff.

Imperfectly Optimized PCB Planning Systems
Before jumping into the issue of whether manpower or machine power really generates fast turnarounds, we need to be sure that the PCB planning system itself is already performing optimally. As William Ho asserts, component placement is the bottleneck of any PCB assembly line. pcb prototype assembly

Essentially, that bottleneck is made up of two parts – component sequencing and feeder arrangements. PCB manufacturers need to choose the optimal sequence of components and then assign them to the appropriate feeders

There are nearly infinite ways that PCB component sequencing and feeder arrangements can be approached. Finding the truly most efficient solution is simply not feasible in a business context – not, at least, with current computational technology, and certainly not within a two-day timeframe.

PCB assemblers on a tight deadline use genetic algorithms to determine near-optimal planning systems without getting lost on the way to the “perfect” solution. While this is not a problem that can be solved with today’s technology, it’s important to remember that no current PCB assembly process is perfectly efficient. This becomes an increasingly complicating factor for high-volume PCB prototype companies.

More Machines Means More Set Up Time
Knowing that any given PCB assembly process must be less than perfectly efficient, we can turn to time constraints on workflow processes.

SMT machines are not plug-and-play devices. Even efficient machines require changeovers of at least an hour – if you run eight to ten setups a week, that means that you’re losing an entire day in production time every week.

Leave a Reply

Your email address will not be published.

合法私人小額借款平台


民間票貼借款推薦


老司機定點外送茶指南


外約兼職外送茶團隊